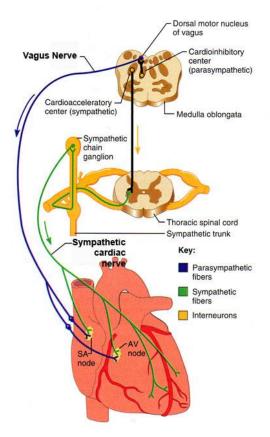

The Effect of Vagus Nerve Stimulation in Heart Failure: Primary Results of the INcrease Of VAgal TonE in chronic Heart Failure (INOVATE-HF) Trial

Michael R Gold, Brett J Berman, Martin Borggrefe, Sanja Djordjevic, P Milasinovic, Suresh Neelagaru, Peter J Schwartz, Randall C Starling, Paul J Hauptman, Spencer H Kubo, Randy A Lieberman, Goran Milasinovic, Dirk J van Veldhuisen, Douglas L Mann

*Dr. Gold and other members of this group have received consulting fees and/or research grants from BioControl Medical

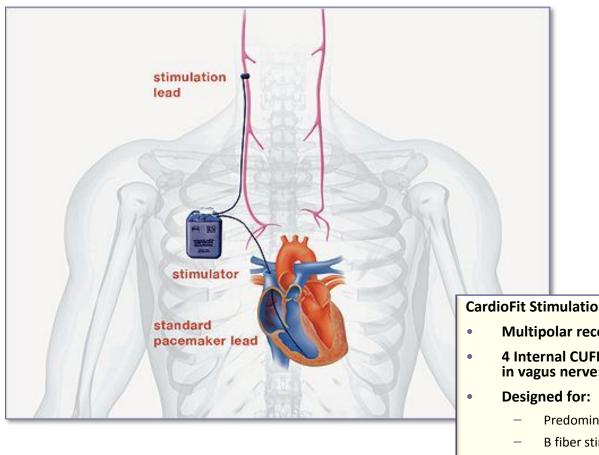
A Key Feature of Heart Failure: Sympathovagal Imbalance

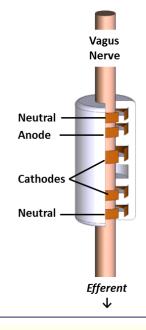

In patients with HF, there is imbalance between the parasympathetic and the sympathetic nervous systems¹⁻⁴

- 2. La Rovere MT, et al. Lancet 1998;351:484-484
- 3. Mortara A, et al. Circulation 1997;96:3450-3458
- 4. Schwartz PJ, et al. Circulation 1988;78:969-979

Cervical Vagus Nerve Stimulation (VNS) directly targets parasympathetic withdrawal

- Parasympathetic innervation of the heart is via the vagus nerve.
- In addition to atrial, SA node, and AV node innervation, parasympathetic post-ganglionic vagus nerve fibers course throughout the ventricles.¹
- Hypothesis: Electrical preganglionic cervical vagus nerve stimulation will help to reestablish diminished vagal tone in HF.²


Autonomic innervation of the heart.


Image from Human Anatomy & Physiology by Elaine N.Marieb 6th edition

^{1.} Coote JH. J Physiol. 2013. 591(Pt 17):4073-85

^{2.} Bibveski S, Dunlap ME. Heart Fail Rev. 2011. 16:129-35

CardioFit® System Components

CardioFit Stimulation Lead:

- Multipolar recessed electrodes, coaxial lead, silicone body
- 4 Internal CUFF diameter sizes to accommodate variability in vagus nerve:
 - Predominately unidirectional/efferent stimulation
 - B fiber stimulation which is important for cardiac response
 - Minimal current leakage to reduce side effects _

CAUTION - Investigational Device. Limited by Federal (or United States) law to investigational use

Pre-Clinical and Pilot Study Evidence

Pre-clinical studies:

- VNS is associated with reverse remodeling in the presence of heart failure medical therapies¹
- Reverse remodeling persists despite fixed rate pacing²
- VNS has possible antiarrhythmic benefit³
- VNS is associated with reduction of inflammatory markers TNF-α and IL-6⁴
- 1. Sabbah HN, et al. Eur J Heart Fail 2007; 6 (Suppl. 1):114 (abstract)
- 2. Zhang Y, et al. Circ Heart Fail. 2009;2:692-699
- 3. Vanoli E, et al. . Circ Res. 1991;68:1471–1481
- 4. Gupta RC, et al. J Am Coll Cardiol. 2006;47:77A (abstract)

- <u>Non-randomized Pilot Study</u>:
 - 32 NYHA II-IV patient study in EU¹
 - Most subjects improved by at least one NYHA class (p<0.001)
 - Improvements seen in 6MHW (p=0.0014) and QoL (p=0.0001)
 - Significant LVEF increase (p=0.003)
 - Results sustained to 2 years²

- 1. De Ferrari GM, et al. Eur Heart J. 2011;32(7):847-55
- 2. Dennert R, et al. Circulation. 2012;126(21, Suppl):A17001

INOVATE-HF Protocol Overview

• Design:

- Prospective, Randomized, multi-national, Controlled
- Open Label (device implant vs. OMT)
- Intent to treat analysis, starts with randomization

• Primary Endpoints:

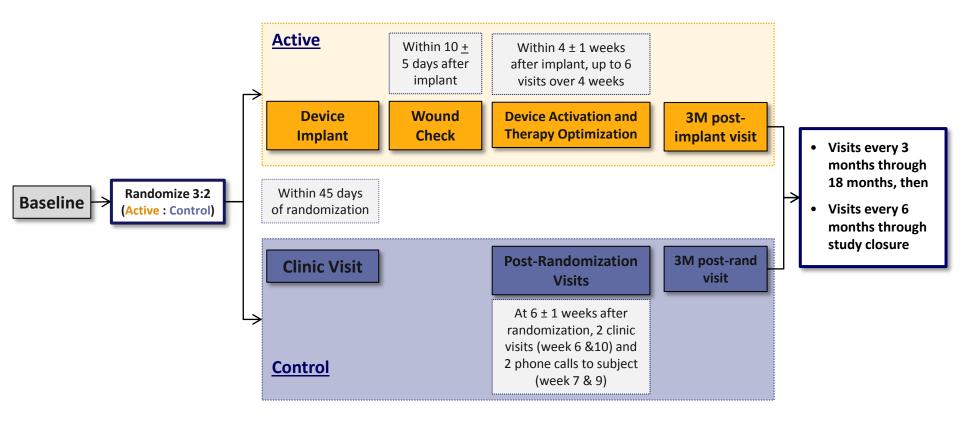
<u>Efficacy</u>: Time to first occurrence of *"unplanned heart failure hospitalization or all cause death"*

- <u>Safety</u>:

- 90 day system related complications
- Comparative non inferiority endpoint (time to first all cause mortality or all cause complications through 1 year excluding events in first safety objective)

Key Screening inclusion/exclusion criteria

Key Inclusion:


- Stable, NYHA class III on stable optimal medical therapy (ACE-I /ARB, beta blocker/CRT or other device therapy)
- LVEF ≤ 40% and LVEDD between 50 and 80 mm
- Predominately in sinus rhythm (unless subject has predominately paced rhythm)
- Subjects with CRT devices may be included in the trial provided they have had CRT for at least 12 months with continued NYHA III functional status (i.e. nonresponders)

Key Exclusion:

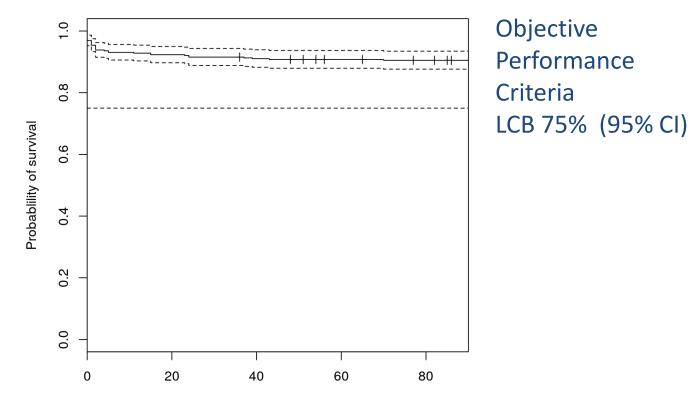
- 2nd or 3rd degree AV block or other pacemaker indication not treated with a pacemaker
- Chronic (permanent) atrial fibrillation in past 3 months or hospitalized due to AF in past 6 months
- Uncontrolled Diabetes Mellitus
- Severe renal or hepatic failure
- History of stroke or TIA within 3 months prior to enrollment, or significant neurological damage

Study Flowchart

Hauptman PJ, Schwartz PJ, Gold MR, Borggrefe M, Van Veldhuisen DJ, Starling RC, Mann DL. Am Heart J. 2012 Jun;163(6):954-962.e1.

INOVATE-HF Baseline Demographics

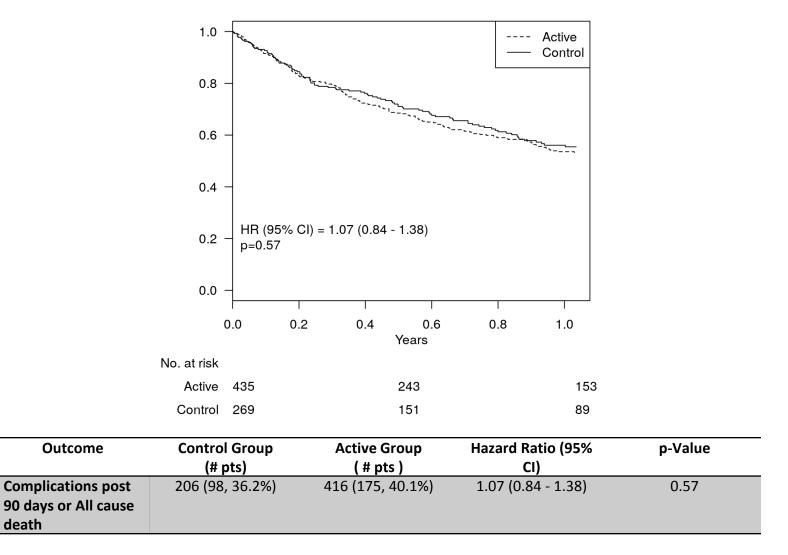
Characteristic	Control Group N=271	Active Group N=436	p-value
Age (yr)	60.9±11.2	61.7±10.5	0.32
Gender (% Male)	219 (80.8%)	339 (77.8%)	0.38
Body mass index (kg/m²)	30.6±6.4	30.4±6.1	0.68
Duration of heart failure (years)	7.07.7±5.73	7.64±6.59	0.22
HF Etiology (Ischemic)	173 (63.8%)	255 (58.5%)	0.19
6-Min hall walk distance (m)	317.0±178.4	304.1±111.5	0.29
LVEF (%)	25.2±7.3	23.9±6.7	0.02
Heart rate (bpm)	71.4±11.5	72.5±12.2	0.20
Medication Therapy			
ACE-I or ARB use	246 (90.8%)	383 (88.2%)	0.31
Beta blocker use	251 (92.6%)	411 (94.7%)	0.56
Diuretic use	230 (84.9%)	365 (84.1%)	0.63
Aldosterone Antagonist use	159 (58.7%)	253 (58.3%)	0.56


Implant Data

- 407 of 409 attempted implants successful
 - 2 unsuccessful implants due to venous occlusions with inability to place RV lead
- 3 Adverse events during implant reported:
 - All events resolved and the subjects were implanted with the CardioFit system
 - Two subjects received IV medications for hypotension after anesthesia was administered and prior to implantation
 - One patient, after the RV lead was placed, developed VT/VF that was treated with ICD defibrillation and CPR
- No CardioFit and concomitant device interactions observed

1st co-primary Safety

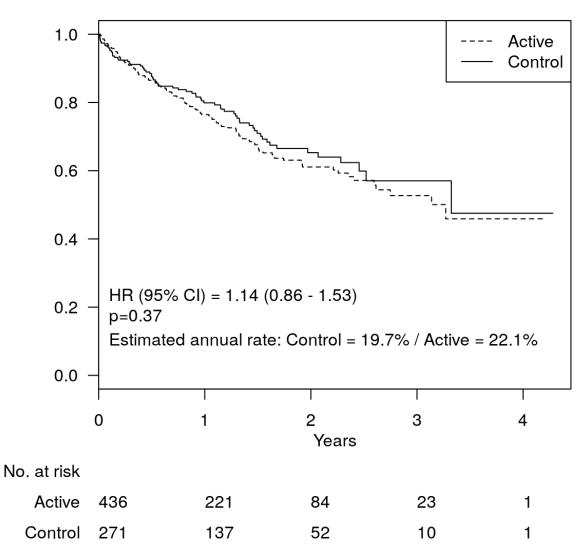
First co-primary safety endpoint



Time to procedure or system related complication (days)

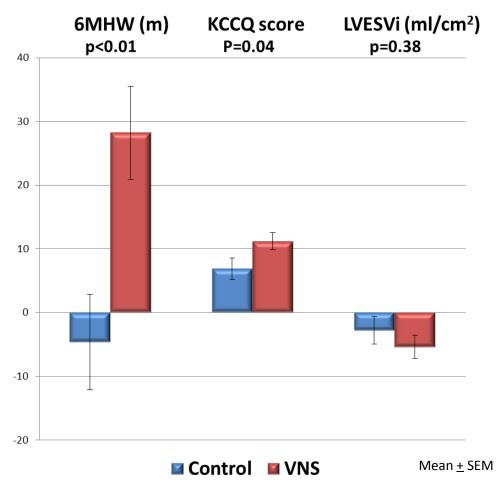
# pts with implant attempt	# pts with procedure related complications up to 90 days	# pts at risk at 90 days	% pts free of procedure related complications for 90 days (95 % CI)
392	37	341	90.6% (87.7% - 93.5%)

2nd co-primary Safety

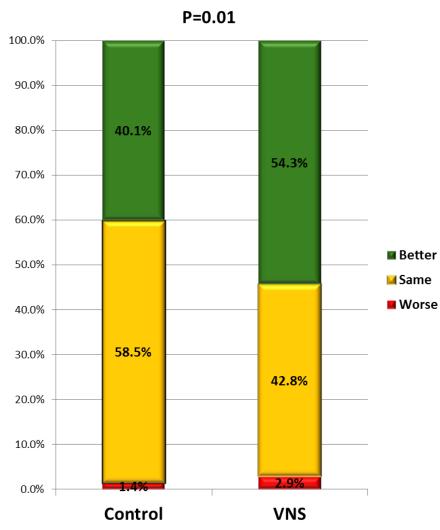


DSMB Review of 2nd Interim Analysis

- Both safety objectives were considered acceptable
- Futility border had been crossed for primary efficacy endpoint
- DSMB recommended stopping the study due to futility
- Study closure by Steering Committee occurred on 15 December 2015



Primary Efficacy Endpoint



Secondary Endpoints

Change from Baseline to 12 Month Follow-up

Change in NYHA (Baseline to 12 Months)

Echo Parameters

Variable	Control Baseline	Control Followup	Active Baseline	Active Followup	Difference between groups	p-value
12 month	Mean <u>+</u> SD (N)	Mean <u>+</u> SE				
LVEF (%)	25.9±7.4 (110)	26.8±8.3 (110)	23.9±7.2 (204)	24.7±7.1 (204)	0.0±0.7	0.97
LVESV (ml)	204.2±86.5 (110)	196.8±87.4 (110)	228.4±98.6 (204)	217.3±99.3 (204)	-3.7±5.9	0.55
LVEDV (ml)	269.1±92.4 (110)	261.3±91.2 (110)	292.4±104.8 (205)	281.3±107.8 (205)	-3.3±6.2	0.61

Univariate Analysis of Pre-specified Subgroups

Variable	N	HR	р		<u>int. p</u>
Age <=70 >70	565 142	1.14 1.08	0.46 0.78		0.91
6MHW at baseline <=300 >300	319 371	1.40 0.96	0.10 0.84		0.20
HF etiology Ischemic Non-ischemic	428 274	0.96 1.52	0.84 0.09		0.15
Gender Female Male	149 558	2.43 0.99	0.02 0.93		0.03
Diabetes Mellitus No Yes	448 258	1.07 1.25	0.72 0.35		0.64
CRT CRT no CRT	240 467	1.38 1.03	0.18 0.86		0.33
All patients	707	1.14	0.37	-0.5 0 0.5 VNS better Control better Log hazard ratio	

Multivariate analysis of the primary efficacy endpoint showed that gender was not an independent predictor of outcome (p=0.17)

INOVATE-HF Summary

- VNS has an acceptable safety profile and is well tolerated long term
- However, this therapy did not reduce the incidence of HF events or all-cause mortality among patients with NYHA III functional status and a reduced ejection fraction
- Positive trends were noted in NYHA class, exercise capacity (6MWT) and QOL measures (KCCQ)
- There were no significant difference in echocardiographic measures between groups